Advanced Glycation End Products and Diabetic Complications
نویسندگان
چکیده
During long standing hyperglycaemic state in diabetes mellitus, glucose forms covalent adducts with the plasma proteins through a non-enzymatic process known as glycation. Protein glycation and formation of advanced glycation end products (AGEs) play an important role in the pathogenesis of diabetic complications like retinopathy, nephropathy, neuropathy, cardiomyopathy along with some other diseases such as rheumatoid arthritis, osteoporosis and aging. Glycation of proteins interferes with their normal functions by disrupting molecular conformation, altering enzymatic activity, and interfering with receptor functioning. AGEs form intra- and extracellular cross linking not only with proteins, but with some other endogenous key molecules including lipids and nucleic acids to contribute in the development of diabetic complications. Recent studies suggest that AGEs interact with plasma membrane localized receptors for AGEs (RAGE) to alter intracellular signaling, gene expression, release of pro-inflammatory molecules and free radicals. The present review discusses the glycation of plasma proteins such as albumin, fibrinogen, globulins and collagen to form different types of AGEs. Furthermore, the role of AGEs in the pathogenesis of diabetic complications including retinopathy, cataract, neuropathy, nephropathy and cardiomyopathy is also discussed.
منابع مشابه
The Mechanisms of Inhibition of Advanced Glycation End Products Formation through Polyphenols in Hyperglycemic Condition.
Glycation, the non-enzymatic binding of glucose to free amino groups of an amino acid, yields irreversible heterogeneous compounds known as advanced glycation end products. Those products play a significant role in diabetic complications. In the present article we briefly discuss the contribution of advanced glycation end products to the pathogenesis of diabetic complications, such as atheroscl...
متن کاملاثر گلوتامین بر شاخص های استرس اکسیداتیو، التهابی گلیکه و همچنین فعالیت سیستم گلیاوکسیلاز در موش های صحرایی دیابتی- آترواسکلروزی
Background and purpose: Vascular complications of diabetes are the most common causes of mortality in diabetic patients. Hyperglycemia, insulin resistance, dyslipidemia, glycation products, oxidative stress, and inflammation lead to atherosclerosis and diabetic nephropathy in diabetes. This research aimed at studying the effect of glutamine (Gln) on main causes of vascular complications in diab...
متن کاملAssessment of Oral Glycine and Lysine Therapy on Receptor for Advanced Glycation End Products and Transforming Growth Factor Beta Expression in the Kidney of Streptozotocin-Induced Diabetic Rats in Comparison with Normal Rats
Background & Aims: Today, diabetic nephropathy is considered to be one of the most common causes of end stage renal disease. Uncontrolled hyperglycemia, and consequently, production of advanced glycation end products activate pathways which play key roles in diabetic nephropathy. Among these pathways, high expression of receptor for advanced glycation end products (RAGE) and transforming growth...
متن کاملClinical Study of Advanced Glycation End Products in Egyptian Diabetic Obese and Non-Obese Patients
Advanced glycation end products (AGEs) are complex, heterogenous molecules generated by glycation and oxidation of proteins in vivo, which are thought to markedly increase in diabetic patients. One of the recently identified AGEs is carboxy methyl lysine (CML), which is the main ligand of receptors for advanced glycation end products (RAGE). The present study aimed to assess the effect of obesi...
متن کاملDicarbonyls and Advanced Glycation End-Products in the Development of Diabetic Complications and Targets for Intervention
Advanced glycation end-products (AGEs) are non-enzymatic protein and amino acid adducts as well as DNA adducts which form from dicarbonyls and glucose. AGE formation is enhanced in diabetes and is associated with the development of diabetic complications. In the current review, we discuss mechanisms that lead to enhanced AGE levels in the context of diabetes and diabetic complications. The meth...
متن کاملEffect of Linalool on the Activity of Glyoxalase-I and Diverse Glycation Products in Rats with Type 2 Diabetes
Background and purpose: Hyperglycemia contributes to type 2 diabetes and diabetes vascular complications by reduction of the activity of glyoxalase-I (GLO-I) and elevation of glycation, oxidative stress, and inflammatory markers. Linalool is reported to have beneficial effects on glucose metabolism in animal models of diabetes, so, this study aimed at investigating the effect of linalool on the...
متن کامل